KEYSIGHT 34465A 6 1/2 디지트, 디지털멀티미터34465A - Digital multimeter, 6 1/2 digit, basic Truevolt DMM
BK PRECISION 1685B 1-60V 0-5A 스위칭 DC파워서플라이, DC전원공급기1685B 1-60V 0-5A 스위칭 DC파워서플라이, DC전원공급기
ITECH IT8948A-150-2400 DC전자로드 150V, 2400A, 48kW, 37UIT8948A-150-2400 고성능 고전력 DC 전자로드 150V/2400A/48kW (37U), Built-in LAN, USB, RS232, CAN, External analog control interface
YOKOGAWA DLM5038 오실로스코프 8Ch/350MHzDLM5038 - 요꼬가와 혼합신호 디지털오실로스코프 8ch, 350MHz
KEYSIGHT 33522B 임의파형발생기 30MHz, 2CH, 임의함수발생기33522B - 2채널, 30MHz, 임의 파형 발생기
SIGLENT SSG3032X-IQE 신호발생기 9K ~3.2GHz시글런트 - SSG3032X-IQE 시그널 제너레이터 9 K ~3.2 GHz/kHz offset; 5 inch TFT touch-screen; With EIQ Function
HIOKI IR4053-10 50~1000V, 디지털 절연 저항계, Digital Insulation TesterIR4053-10 - PV 전용 레인지 탑재 5레인지 디지털 절연 저항계
FLUKE 404E 정품 레이저거리측정기,레이저줄자 40M플루크 레이저 거리측정기 40M
FLUKE RSE30H 열화상 카메라 384x288, -20~2000도, 30Hz 비디오 스트리밍플루크 RSE30H/APAC 열화상 카메라 384x288, -20~2000도, 30Hz 비디오 스트리밍, 이더넷, RS-485, 12V~24V
YOKOGAWA MT300 디지털 마노미터, -D05 700kPa Differential pressure model요꼬가와 - 0.01%, 24 VDC 송신기 출력, D/A 출력, 외부 I/O 단자를 통해 사용자가 제어 신호를 출력
ATTEN ST-862D 100C~480C 열풍기 리워크 스테이션, 핫스테이션, PCB리워크ST-862D 100C~480C, 20~130L/분, 스마트슬림, 히터냉각, 타이밍설정, 단축키, 온도교정, PCB리워크
[Lorentz-3EM] Ion Implanter 해석 적용을 위한 간이 모델링 소개 > 자료실

자료실

전자기장분석 [Lorentz-3EM] Ion Implanter 해석 적용을 위한 간이 모델링 소개

Lorentz-3EM을 국내에 공급하면서 Electric Field, Magnetic Field를 함께 운용하는 경우가 최근 많이 요구되고 있습니다.

이 두가지 장을 함께 적용하는 Particle Trajectory의 아주 좋은 사례로 ion implanter의 모형을 소개하고자 합니다.


우선 ion implantation에 대한 전반적인 이해를 위하여 아래 링크를 참조하시면 합니다.

https://en.wikipedia.org/wiki/Ion_implantation 


여기서 모형도를 참조하고 이를 Lorentz-3EM으로 구성해 보았습니다.

f52c6402afdf45a6bb17bade6641ffd0_1620650209_0922.png

그림1 : Ion Implanter의 개념도(출처:wikepedia)



1차로 Electric 모드에서 Ion source의 이온(입자, 빔)을 방출(가속)합니다. 

공간전하 모드를 반영하여 이온(빔)의 가속 조건을 선택적으로 계산 할 수 있도록 합니다.

f52c6402afdf45a6bb17bade6641ffd0_1620650851_4205.png
 그림2 : Electric 모드에서 공간전하 계산



2차로 Magnetic 모드에서 코일에 전류를 인가하여 자계를 형성 합니다. 

이온(빔)은 자기장 구간을 지나면서 특정 궤적을 형성 하게 됩니다.   


f52c6402afdf45a6bb17bade6641ffd0_1620650963_3887.png

그림3: Magnetic 모드에서 코일전류 인가를 통한 자기장 계산 
 

3차로 Trajectory 모드에서 가속된 이온(빔)이 전기장 구간을 통과 하면서 특정 궤적이 모의됩니다.

f52c6402afdf45a6bb17bade6641ffd0_1620651134_6501.png

그림4: Trajectory 모드에서 이온(빔)이 전기장, 자기장을 통과 하면서 특정 궤적을 형성함을 계산


기본적인 구성이 완료된 이후 Trajectory 모드에서 그림4와 같이 계산되는 것을 확인 하고 영구자석을 이용하여 이온(빔) 궤적이 변화됨을 확인 할 수 있습니다.



f52c6402afdf45a6bb17bade6641ffd0_1620653038_5425.png

그림5: 영구자석을 이용한 이온(빔) 궤적 변화 모의 예



영구자석의 위치가 변함에 따라 이온(빔) 궤적이 변화됨을 계산 할 수 있습니다.

아래 그림6,7,8에서 영구자석의 위치를 주목하고 위치에 따라 이온(빔)들이 어떠한 형태의 궤적을 형성하는지 확인해 볼 수 있습니다.

f52c6402afdf45a6bb17bade6641ffd0_1620653362_3864.png 

그림 7: 영구자석 A 위치에서의 이온(빔)궤적


f52c6402afdf45a6bb17bade6641ffd0_1620653367_3992.png 

그림 7: 영구자석 B 위치에서의 이온(빔)궤적


f52c6402afdf45a6bb17bade6641ffd0_1620653372_4158.png

그림 8: 영구자석 C 위치에서의 이온(빔)궤적



감사합니다.

  • 날짜: 21-05-10 22:22
  • 조회: 14887

댓글목록