KEYSIGHT 34470A 7 1/2 디지트, 디지털멀티미터34465A - Digital multimeter, 6 1/2 digit, basic Truevolt DMM
ITECH IT8245-350-270 45kVA 회생형 AC/DC 전자부하기 AC/DC전자로드ITECH - IT8245-350-270 350V 270A 45kVA Regenerative AC/DC Electronic Load 전자로드
ITECH IT78105-350-630 스위칭타입 AC파워서플라이 350V/630A/105kVA 1φ or 3φIT78105-350-630 스위칭타입 AC전원공급기 350V/630A/105kVA 1φ or 3φ, Built-in USB/CAN/LAN/Digital IO interface, optional GPIB /Analog&RS232 Switch type
LECROY T3DSO3000 오실로스코프, 4CH, 200MHz - 1GHz 대역폭, 8Bit 분해능텔레다인 르크로이- T3DSO3000 오실로스코프, 4CH, 200MHz - 1GHz 대역폭, 8Bit 분해능
KEYSIGHT 33511B 임의파형발생기 20MHz, 1CH, 임의함수발생기33511B - 1채널, 20MHz, 임의 파형 발생기
RIGOL DSA832-TG 9kHz ~ 3.2GHz, 10Hz~1MHz RBW, 800x480 스펙트럼분석기DSA832-TG - 9kHz ~ 3.2GHz, 10Hz ~ 1MHz RBW, 800x480픽셀의 20.3cm(8") 디스플레이를 갖춘 스펙트럼 분석기. 프리앰프와 추적 제너레이터 포함
HIOKI IR4056-21 50~1000V, 디지털 절연 저항계, Digital Insulation TesterIR4056-21 - 50~1000V 디지털 절연 저항계, 연속 검사 기능, 5레인지, L9788-11 포함
BK PRECISION CAL73 소음교정기,소음계,표준 음향 교정기(94dB, 1KHz 사인파)BK CAL73 소음교정기,소음계,표준 음향 교정기(94dB, 1KHz 사인파)
FLIR T540(24도+14도) DFOV 열화상카메라 464X348 IR,928X696, -20~1,500CT540(24°+14°) 열화상카메라 (464X348 IR 해상도, 0.03°C NETD , 5M DC & 928X696 해상도 Ultramax, -20~1,500°C)
YOKOGAWA MT300 디지털 마노미터, -A03 130kPa Absolute pressure model요꼬가와 - 0.01%, 24 VDC 송신기 출력, D/A 출력, 외부 I/O 단자를 통해 사용자가 제어 신호를 출력
[Lorentz-3EM] Ion Implanter 해석 적용을 위한 간이 모델링 소개 > 자료실

자료실

전자기장분석 [Lorentz-3EM] Ion Implanter 해석 적용을 위한 간이 모델링 소개

Lorentz-3EM을 국내에 공급하면서 Electric Field, Magnetic Field를 함께 운용하는 경우가 최근 많이 요구되고 있습니다.

이 두가지 장을 함께 적용하는 Particle Trajectory의 아주 좋은 사례로 ion implanter의 모형을 소개하고자 합니다.


우선 ion implantation에 대한 전반적인 이해를 위하여 아래 링크를 참조하시면 합니다.

https://en.wikipedia.org/wiki/Ion_implantation 


여기서 모형도를 참조하고 이를 Lorentz-3EM으로 구성해 보았습니다.

f52c6402afdf45a6bb17bade6641ffd0_1620650209_0922.png

그림1 : Ion Implanter의 개념도(출처:wikepedia)



1차로 Electric 모드에서 Ion source의 이온(입자, 빔)을 방출(가속)합니다. 

공간전하 모드를 반영하여 이온(빔)의 가속 조건을 선택적으로 계산 할 수 있도록 합니다.

f52c6402afdf45a6bb17bade6641ffd0_1620650851_4205.png
 그림2 : Electric 모드에서 공간전하 계산



2차로 Magnetic 모드에서 코일에 전류를 인가하여 자계를 형성 합니다. 

이온(빔)은 자기장 구간을 지나면서 특정 궤적을 형성 하게 됩니다.   


f52c6402afdf45a6bb17bade6641ffd0_1620650963_3887.png

그림3: Magnetic 모드에서 코일전류 인가를 통한 자기장 계산 
 

3차로 Trajectory 모드에서 가속된 이온(빔)이 전기장 구간을 통과 하면서 특정 궤적이 모의됩니다.

f52c6402afdf45a6bb17bade6641ffd0_1620651134_6501.png

그림4: Trajectory 모드에서 이온(빔)이 전기장, 자기장을 통과 하면서 특정 궤적을 형성함을 계산


기본적인 구성이 완료된 이후 Trajectory 모드에서 그림4와 같이 계산되는 것을 확인 하고 영구자석을 이용하여 이온(빔) 궤적이 변화됨을 확인 할 수 있습니다.



f52c6402afdf45a6bb17bade6641ffd0_1620653038_5425.png

그림5: 영구자석을 이용한 이온(빔) 궤적 변화 모의 예



영구자석의 위치가 변함에 따라 이온(빔) 궤적이 변화됨을 계산 할 수 있습니다.

아래 그림6,7,8에서 영구자석의 위치를 주목하고 위치에 따라 이온(빔)들이 어떠한 형태의 궤적을 형성하는지 확인해 볼 수 있습니다.

f52c6402afdf45a6bb17bade6641ffd0_1620653362_3864.png 

그림 7: 영구자석 A 위치에서의 이온(빔)궤적


f52c6402afdf45a6bb17bade6641ffd0_1620653367_3992.png 

그림 7: 영구자석 B 위치에서의 이온(빔)궤적


f52c6402afdf45a6bb17bade6641ffd0_1620653372_4158.png

그림 8: 영구자석 C 위치에서의 이온(빔)궤적



감사합니다.

  • 날짜: 21-05-10 22:22
  • 조회: 10879

댓글목록