KEYSIGHT U1242C 4디지트 핸드형 디지털 멀티미터, 방수,방진 IP67U1242C - 10,000 counts, 0.09% basic DC voltage accuracy
BK PRECISION XLN30052-GL DC파워서플라이 300V/5.2A/1560W GPIB DC전원공급기XLN30052-GL - 300V/5.2A(1560W), 1채널 DC전원공급기, GPIB/LAN Interface
Chroma 61605 프로그래머블 AC전원공급기 크로마 61600 series크로마 Chroma 61600 61605 프로그래밍 AC전원소스 / 전압 0 ~ 300VAC / 주파수15~1KHz / 4KVA
OWON HDS2061M-N 오실로스코프, 휴대용 DSO, 60MHz, 1채널, 500MS/s오원 HDS2061M-N 휴대용 디지탈 오실로스코프, 휴대용 DSO, 60MHz, 1채널, 500MS/s
OWON AG051F 임의 파형발생기 1채널, 5MHz, 125MS/s, 포괄적 변조, AM, FM, PM, FSK오원 저주파 임의 파형발생기, 1채널, 5MHz, 125MS/s, Modulation, AM, FM, PM, FSK, Sweep, and Burst, USB 인터페이스
OWON HSA1016-TG 휴대용 스펙트럼 아날라이저 9 kHz to 1.6GHz 스펙트럼 분석기오원 HSA1016-TG 휴대용 스펙트럼 아날라이저 9 kHz to 1.6GHz 스펙트럼 분석기
FLUKE 1507 정품 플루크 절연저항계 1507, 절연시험기, 절연저항테스터플루크 1507, 절연범위 0.01MΩ~10GΩ, 절연전압 50V, 100V, 250V, 500V, 1000V
YOKOGAWA GP20 데이터로거 데이터레코더 10입력모듈, 최대 100채널GP20 - 터치판넬을 적용한 신개념 DAQ로서 휴대용 레코더, 최대 100채널 입력, TCP/IP기본내장
FLIR T865(14도,24도,42도) 열화상카메라 640X480 IR, 1280X960, -40~2,000CT865(14° or 24° or 42°) 열화상카메라 (640X480) IR 해상도, 0.04°C NETD, ±1%, 5M DC & 1280X960 해상도 Ultramax, -40~2,000°C)
NEWARE 배터리 충방전기 배터리 테스터 CT-4008Tn-5V12A-S1-F (0.0%,3U)뉴웨어-5mA-1A, 1A-6A, 6A-12A, ± 0.05% of FS, 배터리테스터, 배터리충방전기, 배터리셀단위충방전기
ATTEN ST-862D 100C~480C 열풍기 리워크 스테이션, 핫스테이션, PCB리워크ST-862D 100C~480C, 20~130L/분, 스마트슬림, 히터냉각, 타이밍설정, 단축키, 온도교정, PCB리워크
[Lorentz-3EM] Ion Implanter 해석 적용을 위한 간이 모델링 소개 > 자료실

자료실

전자기장분석 [Lorentz-3EM] Ion Implanter 해석 적용을 위한 간이 모델링 소개

Lorentz-3EM을 국내에 공급하면서 Electric Field, Magnetic Field를 함께 운용하는 경우가 최근 많이 요구되고 있습니다.

이 두가지 장을 함께 적용하는 Particle Trajectory의 아주 좋은 사례로 ion implanter의 모형을 소개하고자 합니다.


우선 ion implantation에 대한 전반적인 이해를 위하여 아래 링크를 참조하시면 합니다.

https://en.wikipedia.org/wiki/Ion_implantation 


여기서 모형도를 참조하고 이를 Lorentz-3EM으로 구성해 보았습니다.

f52c6402afdf45a6bb17bade6641ffd0_1620650209_0922.png

그림1 : Ion Implanter의 개념도(출처:wikepedia)



1차로 Electric 모드에서 Ion source의 이온(입자, 빔)을 방출(가속)합니다. 

공간전하 모드를 반영하여 이온(빔)의 가속 조건을 선택적으로 계산 할 수 있도록 합니다.

f52c6402afdf45a6bb17bade6641ffd0_1620650851_4205.png
 그림2 : Electric 모드에서 공간전하 계산



2차로 Magnetic 모드에서 코일에 전류를 인가하여 자계를 형성 합니다. 

이온(빔)은 자기장 구간을 지나면서 특정 궤적을 형성 하게 됩니다.   


f52c6402afdf45a6bb17bade6641ffd0_1620650963_3887.png

그림3: Magnetic 모드에서 코일전류 인가를 통한 자기장 계산 
 

3차로 Trajectory 모드에서 가속된 이온(빔)이 전기장 구간을 통과 하면서 특정 궤적이 모의됩니다.

f52c6402afdf45a6bb17bade6641ffd0_1620651134_6501.png

그림4: Trajectory 모드에서 이온(빔)이 전기장, 자기장을 통과 하면서 특정 궤적을 형성함을 계산


기본적인 구성이 완료된 이후 Trajectory 모드에서 그림4와 같이 계산되는 것을 확인 하고 영구자석을 이용하여 이온(빔) 궤적이 변화됨을 확인 할 수 있습니다.



f52c6402afdf45a6bb17bade6641ffd0_1620653038_5425.png

그림5: 영구자석을 이용한 이온(빔) 궤적 변화 모의 예



영구자석의 위치가 변함에 따라 이온(빔) 궤적이 변화됨을 계산 할 수 있습니다.

아래 그림6,7,8에서 영구자석의 위치를 주목하고 위치에 따라 이온(빔)들이 어떠한 형태의 궤적을 형성하는지 확인해 볼 수 있습니다.

f52c6402afdf45a6bb17bade6641ffd0_1620653362_3864.png 

그림 7: 영구자석 A 위치에서의 이온(빔)궤적


f52c6402afdf45a6bb17bade6641ffd0_1620653367_3992.png 

그림 7: 영구자석 B 위치에서의 이온(빔)궤적


f52c6402afdf45a6bb17bade6641ffd0_1620653372_4158.png

그림 8: 영구자석 C 위치에서의 이온(빔)궤적



감사합니다.

  • 날짜: 21-05-10 22:22
  • 조회: 15749

댓글목록